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Algorithms for solving algebrized transfer equations on a continuous rectangular grid are proposed. The 

efficiency of the methods proposed is illustrated by performing a numerical two-dimensional simulation of 

a submicron bipolar transistor in the high injection-level mode. 

A number of transfer phenomena in liquid, solid, and gaseous media whose analysis is important for the 
solution of scientific or engineering problems are described by systems of partial differential equations (PDE). 

Upon the spatial discretization of a given system using the finite-difference or finite-element approach and 
linearization, the problem is reduced to the solution of systems of linear algebraic equations (SLAE). The matrices 
of the SLAE of the class of problems under consideration are usually characterized by a high order (tens of 

thousands or even millions), are sparse, ill-conditioned, and, as a rule, unsymmetrical. In this case, iterative 
procedures for solving linear systems have an advantage over direct methods [1 ]. The efficiency of solving the 
entire problem depends to a great extent on the efficiency of solving the SLAE, since the expenditures connected 
with solving linear systems are predominant. 

Presently, the biconjugate gradient method (BCG) [2 ] and its improved versions CGS [3 ] and CGSTAB 
I3 ] are widely used in solving large sparse SLAE with an unsymmetrical matrix. A number of results attest to the 

efficiency of BeG-type algorithms in the analysis of charge transfer processes in VI.~I elements [5, 6 ], oil-well 
simulations [7 ], or in solving a system of Navier-Stokes equations describing the motion of a viscous incompressible 
liquid [8 ]. The development of efficient iterative algorithms for solving SLAE is important in solving heat transfer 
equations [9 ], simulations of transfer phenomena in a dense electron-hole semiconductor plasma [10], and in a 
number of other important engineering applications. 

In order to improve the efficiency of the methods [2-4 ] we propose a procedure of constructing a refined 
initial approximation developed primarily for the case of a symmetrical matrix of the SLAE being solved [ 11 ]. In 
the absence of symmetry, in contrast to [ 11 ], two orthogonal projectors should be used. Projection algorithms for 
the BCG, CGS, and CGSTAB methods are described. We propose efficient versions of the algorithms developed 
for solving systems of five-point grid equations approximating two-dimensional boundary-value problems on 
rectangular grids. Generalizations of projection operators described in [11, 12] are used. Results of a numerical 

study on the problem of two-dimensional simulation of charge transfer processes in elements of silicon VLSI with 
the use of the drift-diffusion approximation are presented. The results of experiments indicate the efficiency of the 
algorithms proposed. 

Let us consider the SLAE 
Ax = b, (I) 

where A is an n x n symmetrical matrix of coefficients. The preconditioned algorithm of the BCG method [2 ] can 
be written as follows. 

BCG algorithm. 

1. Construction of the preconditioner H. 
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2 .  I n i t i a l i z a t i o n  r 0 = b - Ax0, r0 = r0, P0 = 1 ,  P 0  = = 0. 

3 .  I terat ion ref inement  ( i  = 1 ,  2 ,  3 . . . .  ): 

3.1) solut ion of the auxi l iary  sys tem H y  = r i_ t ;  

3.2) p~ = ~Tty ; 

.5.3) fli = P i / P i - l  ; 

3.4) Pi = Y + f l iP i - l ;  

3.5) solution of the auxi l iary  sys tem H T z  = r'~_l; 

3.6) Pi = z + - 1 ; 

3.7) v = APi; 

3.8) = m /  v); 

3.9) xi  = x i - 1  + aiPi; 

3.10) ri = r i - I  - air;  

3.11) ,,if II is sufficiently small,  te rminate  computati~tas; 

3.12) r i = ri_ I - a'e4T'pi . 

In this case the following relat ionships  take place ~[2 ]: 

T A A T 
r i r j = r  i r ] = O ,  d :~S  ~, 

Pi A p j  pT  A T ~' (2) 

Let a s sume  tha t  the vectors 

PO, P l ,  "", P k - I  and  :P0, Pl, ........ ,~k--!~, 

where  k < n, which sat isfy condi t ion (2), a re  known.  We denote  the i r  lin~,~r ~ a n s  "as .~ :and ~', ~espectively.  T h e n ,  

using the  same  reasoning  as in [11, 12 ], we can build a p ro jec t~  o n  F • ::ailong s :~,k~a~e ~a ~ t h e  A-o r thogona l  

complement  of F, 

. . T  . " ,  T k-I pi{A Pi) 
R = I -  ~ '  

i = 0  ^ T  
Pi APi 

and  the projector  on E • along F 

^ T 
^ k -  1 Pi (APi)  
R = I -  

i = 0  ^ T  
Pi APi 

where  I is the n x n ident i ty  matrix. Now the solution of sys tem (1) can be presen ted  as follows: 

AT 
k - I  Pi b • 

x = y + z = Z ai  Pi + z ,  where a i - - -  and z E E . 
i = 0  ^ T  

Pi APi 

In this case it is sufficient to de te rmine  just one  componen t  of z that  solves the sys t em 

A z  = R Tb . (3) 

It can be shown that  z = R x  and  therefore ,  instead of (3), one  can solve the SLAE 

A T 
A R x  = R b ,  ( 4 )  
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with the singular matrix AR. Nevertheless, system (4) is compatible, since rank AR = rank [AR, RTb] - rank R - 

n-k .  The solution of (4) is not unique. In order to make x from (4) a so lut ion  of initial system (1) ,  one  must  de f ine  

an additional condition. The condition is obviously a refinement of the initial approximation in subspace E 

k-I  
Y = ~ a i P i "  ( 5 )  

i=0 

T A 
It is known that the BCG method solves, in addition to (1), the conjugate system A x = b with the following initial 

approximation in subspace F: 

k-I  
A 

i=O 

where ~i = P T ~ / p T A P i "  

Relationships (5) and (6) determine the initial approximation for the BCG method. Now A-orthogonali ty 
^ 

of vectors Pi  to the hyperplane A R w  = 0 and AT-orthogonality of vectors Pi  to A T R w  = 0 should be ensured in the 

iterative ref inement  process. The  required orthogonalization is carried out in the framework in the projection BCG 

algorithm proposed in what  fol lows.  

Project ion BCG algorithm. 

I. Construct ion  of  the  precondi t ioner  H.  

2. Computat ion  of the  refined initial approximation from (5) ,  (6) .  

^ T^ P0 3. In i t ia l izat ion  s = b - Axo,  r0 = s - Ay, r 0 = s - A y, P0 = I ,  P0 " = 0. 

4. Iterative re f inement  (i = l ,  2, 3 . . . .  ): 

4. I) so lut ion  of the auxiliary system H ~  = r i _  I; 

4.2) projection y = R~  
A T 

4.3) P i  = r i - l Y  ; 

4.4) f l i  = p i l p i - l ;  

4 . 5 )  P i  ~= Y + f l i P i -  1 ; 
A 

4.6) solution of the auxiliary system H T z  = r i_  l; 
^ 

4.7) Pi  "= R z  + f l i P i -  l; 

4.9) i ( v), 

4.10) x i = x i _  1 + ctiPi; 

4 . 1 1 )  r i = r i_  1 - a i r ;  

4.12) if ]lri }1 is sufficiently small, terminate computations; 

4.13) r i = r i_  1 - a i A  Pi. 

If a suff ic ient ly  large number  of vectors (3) sat isfying condi t ion (2) can be built, and  the initial 

approximation (5), (6) and projection operators R and R can be computed on their basis, then the iteration 

expenditures for the projection BCG-algorithm can be substantially smaller than those of the traditional method 

[2 ]. The  reason is in the fact that the dimension of the matrix-vector products (items 4.8 and 4.13), scalar products 

(items 4.3 and 4.9), and operations of the s = ax + y (saxpy) type (items 4.5, 4.7, 4.l 1, and 4.13) is n - k instead 

of n. The  only condition is that the economy obtained should be greater  than the cost of two additional projection 

operations (items 4.2 and 4.7). The use of generalized projectors [11, 12 ] leads to total reduction of the number  

of arithmetical operations for the projection algorithm, as will be shown in what follows. In the BCG algorithm both 

sequences r i and r~- converge to zero. However, only convergence of r i is used in the solution of system (1). In the 

CGS algorithm [3 ] the sequence r i is not built at all, and all efforts are concentrated on converging r i to zero. 

Using the proposed method of construction of the refined initial approximation, we obtain the projection 

algcrithm of the CGS method. 
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Projection CGS algorithm. 

1. Construction of the preconditioner H. 

2. Computation of the refined initial approximation from (5), (6). 
^ T ^ 3. Initialization s = b - A x o ;  r o  = s - A y ,  r ffi s - A y, P0 ffi 1, PO = q0-- 0. 

4. Iterative refinement (i ffi 1, 2,  3 . . . .  ): 
^ T  4.1) P i  ffi r r i _ l ;  

4.2) f l i  ffi P i / P i  - l ;  

4.3) u = r  i _  1 + f l i q i - l ;  

4.4) Pi  ffi U + f l i ( q i - I  + f l / P i - l ) ;  

4.5) solution of the auxiliary system H~'= Pi ;  

4.6) projection y ffi R~, 

4.7) v ffi A y ;  

4.8) a i  ffi p i / ( ~ T v ) ;  

4.9) qi  = u - -  a i v  ; 

4.10) solution of the auxiliary system H ' ~ f f i  u + q i ;  

4.11) projection z ffi R~, 

4.12) x i  = x i -  I + a i z ;  

4.13) r i = r i -  1 - a i A z ;  

4.14) if Ilri I! is sufficiently small, terminate computations. 
In the given algorithn, computations of the scalar products (items 4.1 and 4.8), matrix-vector products 

(items 4.7 and 4.13) and saxpy (items 4.3, 4.4, 4.9, and 4.13) have a dimension of n - k. The absolute gain for 

the CGS algorithm as a result of application of the projective transformation appears to be one saxpy operation 

were than for the BCG method. At the same time, the number of projection operations remains the same (items 

4.6 and 4.11). 

A number of results bears witness to an advantage of the CGS over the BCG (see, e.g., [3, 6, 7 ]. However, 

both of the methods have a negative feature consisting in the absence of minimizing properties. As a result, a 

nonmonotonic convergence to zero of the discrepancy sequence is observed. The CGSTAB algorithm [4 ] is free of 
this shortcoming, which results from the special choice of the polynomial form of the method. CGSTAB minimizes 

discrepancy in the ][r 112 norm. Prior to passing to the consideration of the algorithm, we specify the 
preconditioning procedure. In the present work for all methods under investigation an incomplete LU-factorization 

of the matrix A in the form I L U ( O )  [13 ] is considered as H. 

By applying the procedure of construction of the refined initial approximation we obtain the following 

algorithm. 

Projection CGSTAB algorithm. 

1. Construction of the preconditioner H ffi L U .  

2. Computation of the refined initial approximation from (5), (6). 
^ T ^ 3. Initialization s = b - A x o ,  r 0 = s - A y ,  r ffi s - A y ,  P O  = ct ffi w 0 = 1, PO = v o  = O. 

4. Iterative refinement (i = 1, 2, 3 . . . .  ). 
^ T  ^ 

4 . 1 )  Pi  = r r i _ l ;  f l i  = ( P i / P i - I ) ( a / W i - l ) ;  

4.2) P i  -- r i - t  + f l i ( P i - I  - w i - l v i - I ) ;  

4.3) solution of the auxiliary system H ~ f f i  P i ;  

4.4) projection y = R~, 

4.5) vi  -- Ay; 
^ T  4.6) a • p i / ( r  v i ) ;  

4.7) q = r i _  I - a v i ;  

4.8) solution of the auxiliary system H~'= q; 
4.9) projection z ffi R~ 
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TABLE 1. Efficiency Estimate for Algorithms Under Investigation 

Method Projector 

BCG 

CGS 

CGSTAB 

NP2 

NP3 

NP2 

NP3 

m 

NP2 

NP3 

Iteration cost 

29tin + 23ta 

25tin + 18ta 

26" l/3tm + 17"2/3ta 

30tm + 25ta 

25.5tm + 19ta 

26"2/3tm + 18"1/3t a 

35tin + 28ta 

29.5tm + 21.5ta 

30" 1 ~3tin + 20" 2/3ta 

4.10) 
4.11) 
4.12) 
4.13) 

4.I4) 

t = Az;  
to i = ( ( L - I  t ) T ( L - I  q ) ) /  ( ( L - I  t ) T ( L - I  t)); 

Xi " x i - 1  + a y  + wiz;  

r i - q -- wit;  

if ilri II is sufficiently small, terminate computations. 
It should be noted that item 4.11 assumes the solution of an auxiliary system with the lower triangular 

matrix, while the vector L - l q  is an intermediate result of computations in item 4.8. It is easy to verify that 

application of the projective transformation to the CGSTAB algorithm is even more efficient than in the case of the 
two preceding algorithms, since in this case n - k  is the dimension of four scalar products (items 4.1, 4.6, and 4.11), 
two matrix-vector products (items 4.5 and 4.10), and four saxpy-type operations over vectors (items 4.2, 4.7, and 

4.13). 
We now come to the description of the implementation of the proposed projection algorithms. We will 

consider systems of five-point grid equations approximating two-dimensional boundary-value problems on a 
continuous rectangular grid. In this case the matrix of coefficients of system (l) has a five-diagonal structure. In 
numerical experiments, projection BCG, CGS, and CGSTAB algorithms are investigated along with generalizations 
of NP2 and NP3 projectors in terms of [12]. In this case, the estimate presented in Table l holds for iteration 
costs. For comparison, Table 1 also presents the iteration cost for the traditional implementation of the methods 
[2-4 ]. It is evident that the algorithms described in the present work have lower iteration costs than the standard 
versions of the methods [2-4 ], which explains their advantage for the same number of iterations required to reach 

a given accuracy. 
Let us consider the problem of numerical simulation of charge-transfer processes in elements of silicon 

VLSI. The drift-diffusion model implies solution of the following set of PDE [14 ]: 

V-(eV~O) = - p ,  (7) 

On 1 (8) 
O t - q V j n -  R ,  

where 

Op 1 . 
o t  ~ - -q v :p  - R ,  (9) 
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Fig. 1. Structure of a submicron bipolar transistor. X,/~m, Y,/~m. 

Fig. 2. Impurity distribution over cross-sections, log C, cm -3. 

i .  = - q/~. (nV,p - kTVn),  

ip = - q~p (pVg, + kTVp) ,  

q (p - n + C )  - in interior of semiconductor ,  
P = Qss - at the Si /SiO 2 interface.  

The  given model accounts for band gap narrowing, Shock ley -Reed  and Auger recombination mechanisms, 

generation by avalanche multiplication in a strong field, photoexcitation, and tunneling. The  mobility model takes 

into account scattering on ionized impurities, acoustic phonons, electron-hole scattering, surface scattering, and 

the phenomenon of saturation of the drift velocity [14, 15 ]. 

One of most widespread approaches to solving nonlinear system (7)-(9) is successive iteration until a 

self-consistent solution is obtained [14, 15 ]. In this case, three SLAE should be successively solved in each external  

iteration. When using continuous rectangular grids for spatial discretization of the problem and five-point difference 

schemes, the matrices of coefficients of the specified SLAE have a five-diagonal structure. The  matrix of the 

algebrized Poisson equation (7) is a symmetrical  positive definite matrix. As a result  of the strong diagonal 

prevailing, a small number  of iterations of the preconditioned method of conjugate gradients is usually required for 

solving the corresponding linear system [13 ]. Efficient projection algorithms from [11, 12] were used in solving 

the SLAE of the Poisson equation in the experiments described below. When using charge carrier concentrat ions 

as variables, the matrices of linear systems of algebrized continuity equations (8) and (9) are unsymmetrical .  SLAE 

of the type present serious difficulties for numerical solution [6 ]. To do this, we will apply here all the algorithms 
described in the present work. 

As a test example, we consider a submicrometer-sized bipolar transistor with the depth of the emitter  

transit ion of 0.1 /zm (Fig. 1). The  distr ibution of the impurity over cross-sections A' - A (solid curve)  and 

B' - B (dashed curve) is presented in Fig. 2. External  displacements Vbe -- 0.85 V and Vce = 5 V correspond to the 

high injection-level mode. The size of the spatial discretization grid is 36 x 49 = 1764 nodes. When using the 

successive quasi-Hummel algorithm KGI [14l for solving the nonlinear system, a self-consistent solution was 

obtained after  24 external  iterations (the condition 6 < 10 -4  was chosen as a convergence criterion, where t5 is the 
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TABLE 2. Results of Computational Experiments 

Method Projector 

BCG 

NP2 

NP3 

CGS 

NP2 

NP3 

CGSTAB 

NP2 

NP3 

N 

3194 

2586 

2373 

2524 

2148 

1996 

2200 

1988 

1868 

t, sec 

923.82 

625.24 

555.93 

716.91 

518.21 

469.25 

796.44 

581.84 

521.62 

r, sec 

1116.47 

817.63 

748.58 

909.24 

710.90 

661.52 

990.96 

773.07 

712.99 

maximum absolute value of the relative variation of the electrostatic potential). The accuracy of the solution of the 

SLAE increased with decreasing 6, according to [12 ]. 
Table 2 presents the total number of iterations N for each of the methods under investigation, the total 

time t for solving all SLAE and the time r for solving the entire problem of simulation of a submicron transistor in 

the given mode. All the times correspond to calculations on an IBM PC/AT 386/387. 
Analysis of Table 2 shows the high efficiency of application of projection operators in combination with the 

algorithms [2-4 ]. A decrease in time costs results from a decrease in iteration costs (see Table 1). In addition, as 

follows from Table 2, the use of orthogonal projectors and auxiliary subspaces leads to a decrease in the number 
of iterations, since the approach being developed involves preconditioning by means of a singular matrix. It is 
evident that the SLAE solution time comprises the main portion of the total solution time of the problem. 

Thus, the algorithms proposed make it possible to improve the efficiency of solving the problem of numerical 
simulation of microelectronic structures. Inasmuch as SLAE with matrices of the considered structure emerge in 
various engineering and physical applications, the methods proposed have a wider area of application. 

N O T A T I O N  

e, relative dielectric constant; g,, electrostatic potential; p, charge; n, p, concentrations of electrons and 
holes; t, time; Jn, Jp, densities of electron and hole currents; R, excess of recombination rate of charge carriers over 
generation rate; q, elementary charge;/~n, #p, electron and hole mobilities; k, Boltzmann constant; T, absolute 

temperature; C, resulting dopantt concentration; Qss, bound charge at the Si/SiO2 interface; tin, ta, performance 
times for floating-point multiplication and addition operations; Indices: ce, collector-emitter; be, base-emitter. 

R E F E R E N C E S  

. 

2. 

3. 
4. 

5. 
6. 
7. 
8. 

9. 

L. Heigeman and D. Young, Applied Iterative Methods [Russian translation ], Moscow (1986). 

R. Fletcher, Lect. Notes Math., No. 506, 73-89 (1976). 
P. Sonneveld, SIAM J. Sci. Star. Comput., 10, No. l, 36-52 (1969). 
H. A. van der Vorst, SIAM J. Sci. Stat. Comput., 13, No. 2,631-644 (1992). 

C. den Heijer, in: Simulation of Semiconductor Devices and Processes, Swansea (1984), pp. 267-285. 
G. Heiser, C. Pommerell, J. Weis, and W. Fichtner, IEEE Trans., CAD-10, No. 10, 1218-1230 (19910. 

P. Joly and R. Eymard, J. Comput. Phys., 91, No. 2,298-309 (1990). 
E. F. D'Azevedo, P. A. Forsyth, and W.-P. Tang, BIT, 32, No. 3,442-463 (1992). 

G. E. Schneider and M. Zedan, Numer. Heat Transfer, 4, No. I, 1-19 (1981). 

167 



10. V.A. Nikolaeva, V. I. Ryzhii, and B. N. Chelvertushkin, Inzh.-Fiz. Zh., 51, No. 3,492-501 (1986). 
11. S.G. Mulyarchik, S. S. Bielawski, and A. V. Popov, J. Compuh Phys., ! 10, No. 2, 201-211 (1994). 
12. S.S. Belyavskii, S. G. Mulyarchik, and A. V. Popov, Differents. Uravn., 29, No. 9, 1575-1584 (1993). 
13. J.A. Meijerink and H. A. van der Vorst, Math. Comput., 31, No. 137, 1480162 (1977). 
14. S.G. Mulyarchik, Numerical Simulation of Microelectronic Structures [in Russian ], Minsk (1989). 
15. S. Selberherr, Analysis and Simulation of Semiconductor Devices, New York (1984). 

168 


